| Menyu
ITI
əməkdaslarının elmi isləri
Elektron kitabxana
Konfranslar İnformasiya Sistemi
Qəzetlər
UOT 004
|
| ITI əməkdaşlarının elmi işləri - məqalə |
| Biblioqrafik təsvir | | Aghayev , N. Support vector machines for forecasting non-scheduled passenger air transportation / N. Aghayev // Problems of Information Technology. - 2024. - N: 1, vol.15, . - P. 3-9. | | Annotasiya | | Forecasting non-scheduled passenger air transportation demand is essential for
effective operational planning and decision-making. In this abstract, we explore the
use of Gaussian Support Vector Machines (SVM) methods in forecasting nonscheduled passenger air transportation processes. SVM is a type of supervised
machine learning algorithm that can be applied to various domains, including nonscheduled passenger air transportation. In classification and regression tasks, SVMs
are considered especially useful. SVMs can be used to forecast passenger demand
for specific routes or flights. By analysing historical data, including factors such as
time of day, day of the week, etc., SVMs can help airlines estimate future passenger
demand. This method is crucial for optimising ticket pricing and managing seat
inventory. This research proposes the implementation of different Gaussian SVM
methods for the forecasting of non-scheduled passenger air transportation.
| | Elektron variant | | Elektron variant |
|
________
© ict.az http://ict.az/az
|
|