Menyu
Avtorizasiya  
Login: 
Parol: 
ITI əməkdaslarının elmi isləri Elektron kitabxana Konfranslar İnformasiya Sistemi Qəzetlər UOT 004
eXTReMe Tracker
ITI əməkdaşlarının elmi işləri - məqalə


 Biblioqrafik təsvir
 Aghayev , N. Support vector machines for forecasting non-scheduled passenger air transportation / N. Aghayev // Problems of Information Technology. - 2024. - N: 1, vol.15, . - P. 3-9.
 Annotasiya
 Forecasting non-scheduled passenger air transportation demand is essential for effective operational planning and decision-making. In this abstract, we explore the use of Gaussian Support Vector Machines (SVM) methods in forecasting nonscheduled passenger air transportation processes. SVM is a type of supervised machine learning algorithm that can be applied to various domains, including nonscheduled passenger air transportation. In classification and regression tasks, SVMs are considered especially useful. SVMs can be used to forecast passenger demand for specific routes or flights. By analysing historical data, including factors such as time of day, day of the week, etc., SVMs can help airlines estimate future passenger demand. This method is crucial for optimising ticket pricing and managing seat inventory. This research proposes the implementation of different Gaussian SVM methods for the forecasting of non-scheduled passenger air transportation.
 Elektron variant
Elektron variant

     ________
     © ict.az   http://ict.az/az
 
Copyright © 2009-2021 AMEA İnformasiya Texnologiyaları İnstitutu