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The aim of this study is the development of a weighted consensus clustering that assigns weights to 

single clustering methods using the purity utility function. In the case of Big data that does not con- 

tain labels, the utility function based on the Davies-Bouldin index is proposed in this paper. The Ban- 

knote authentication, Phishing, Diabetic, Magic04, Credit card clients, Covertype, Phone accelerometer, 

and NSL-KDD datasets are used to assess the efficiency of the proposed consensus approach. The pro- 

posed approach is evaluated using the Euclidean, Minkowski, squared Euclidean, cosine, and Chebychev 

distance metrics. It is compared with single clustering algorithms (DBSCAN, OPTICS, CLARANS, k-means, 

and shared nearby neighbor clustering). The experimental results show the effectiveness of the proposed 

approach to the Big data clustering in comparison to single clustering methods. The proposed weighted 

consensus clustering using the squared Euclidean distance metric achieves the highest accuracy, which is 

a very promising result for Big data clustering. It can be applied to expert systems to help experts make 

group decisions based on several alternatives. The paper also provides directions for future research on 

consensus clustering in this area. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Today, expert systems are widely used in various areas, such as

usiness, medicine, process management, space technology, etc. To

xtract knowledge from existing growing information, the need to

evelop approaches based on machine learning is relevant. Practice

hows that clustering is used for research and evaluation of clus-

ered knowledge. Thus, clustered expert systems are developed to

xplain the data when diagnosing and making final decisions. 

Now there is a tendency to use ensemble methods in cluster

nalysis when it is difficult to apply a certain algorithm to data

lustering ( Ghosh & Acharya, 2011 ). One of the clustering problems

s a high computational cost, which makes it difficult to get good

esults on the complex Big data. 

A consensus approach is widely used to increase the accuracy

nd stability of clustering results ( Berikov & Pestunov, 2017 ; Franek

 Jiang, 2014 ; Ghosh & Acharya, 2011 ; Jia, Liu & Jiao, 2011 ; Kashef

 Kamel, 2010 ; Nguyen & Caruana, 2007 ; Wu et al., 2017 ). The ap-

roach is to find an agreed solution due to the possibility of shar-

ng the methods of cluster analysis. It is possible to construct the

ost suitable clustering scheme for a particular domain by apply-

ng a consensus approach to a different set of algorithms according

o their advantages and distinctive features. In developing the final
∗ Corresponding author. 
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ecision, different points of view are considered that not only do

ot contradict but, on the contrary, compensate for the shortcom-

ngs of each method. 

Consensus clustering helps generate reliable partitions, handle

oise, and outliers ( Nguyen & Caruana, 2007 ). It acts as a promis-

ng solution for data clustering. A lot of work was devoted to con-

ensus clustering based on k-means, but the studies are still pre-

iminary and fragmentary. 

At the same time, consensus clustering searches for a common

artition, which is consistent with the existing single clustering

ethods. In this case, the problem is the development of the util-

ty function and its efficient optimization. To this end, the paper

roposes a utility function based on purity. 

Consensus clustering is a promising solution for finding clusters

n high-dimensional data because of its reliability and versatility.

he main contribution of our work is as follows: 

(1) In this paper, a weighted consensus clustering for the ef-

ficient combination of single partitions for Big data appli-

cation is proposed. The results of the study show that the

weighted consensus clustering based on purity utility func-

tion (PWCC) is efficient, clear, and reliable. 

(2) The proposed approach can be applied to any expert system.

It is designed for any number of alternatives and can be im-

plemented in any architecture. Weighted consensus cluster-

ing will allow experts to use it when making group deci-

sions. 

https://doi.org/10.1016/j.eswa.2020.113294
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2020.113294&domain=pdf
mailto:lsuhostat@hotmail.com
https://doi.org/10.1016/j.eswa.2020.113294
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(3) The experimental results on real datasets of various size

using the Euclidean, Minkowski, squared Euclidean, cosine,

and Chebychev distance metrics show that weighted consen-

sus clustering is highly efficient, comparable and superior to

state-of-the-art approaches according to clustering quality. 

The rest of the paper is organized as follows. Section 2 gives

a literature review of existing works on consensus clustering. In

Section 3 , clustering evaluation metrics are presented. Single clus-

tering methods are considered in Section 4 . Section 5 describes

the proposed approach. Section 6 compares the proposed approach

with single clustering methods to illustrate the benefits of the pro-

posed implementation. Section 7 provides a statistical significance

test. Then a discussion of the results is given, followed by conclu-

sion and future work. 

2. Related work 

Data clustering requires the development of a general algorithm

and selection of the best decision criteria ( Cabrerizo et al., 2015 ;

Pérez, Mata, Chiclana, Kou & Herrera-Viedma, 2016 ). However, due

to the large variety of existing methods, it is difficult to choose

the most effective one. Researchers have developed many clus-

tering approaches that take into account the advantages and dis-

advantages of various methods to construct one final clustering

( Table 1 ). Nguyen and Caruana (2007) presented three Expectation-

Maximization (EM) like algorithms (Iterative Voting Consensus, It-

erative Probabilistic Voting Consensus, and Iterative Pairwise Con-

sensus) to solve the problem of consensus clustering. The proposed

algorithms are variations of the k-means algorithm using different

distance measures applied to the vector of base-level clustering. 

Fuzzy consensus clustering (FCC) was studied by

Wu et al. (2017) . The objective function of FCC using the pro-

posed fuzzified contingency matrix was defined. Then a family of

FCC Utility functions termed as FCCU that can transform FCC to

a weighted piecewise fuzzy c-means clustering (piFCM) problem

was obtained. Experiments on various real-world datasets demon-

strated the excellent performance of FCC, even with a majority of

poor basic partitions. 

A homogeneous clustering ensemble based on the Particle

Swarm Clustering algorithm (PSC) was proposed by De Oliveira, Sz-

abo and de Castro (2017) . It can be considered as a two-step pro-

cedure: first, several base partitions are obtained from the data, af-

terward; a final partition is computed by a consensus function that

takes the base partitions as input. The proposed clustering ensem-

ble uses PSC both to generate the base partitions and in the con-

sensus function, and supports both disjoint and overlapping parti-

tions. 

A graph-based algorithm for combining multiple clusterings

based on cliques (maximally complete subgraphs) was described

( Mimaroglu & Yagci, 2012 ). The algorithm finds a substantial sub-

set of all the cliques quickly for speedup of clustering in a large

graph. 

An ensemble clustering approach based on ensemble-driven

cluster uncertainty estimation and local weighting strategy was

proposed ( Huang, Wang & Lai, 2018 ). The uncertainty of clusters

was estimated by considering the cluster labels in the entire en-

semble based on an entropic criterion, and a new ensemble-driven

cluster validity index (ECI) was proposed. A local weighting scheme

was presented to extend the conventional co-association matrix

into the locally weighted co-association matrix via the ECI mea-

sure. Also, two novel consensus functions locally weighted ev-

idence accumulation (LWEA) and locally weighted graph parti-

tioning (LWGP) consensus functions were proposed. Although the

above approaches are valid solutions, they do not consider a large

amount of data clustering. 
The contribution of work ( Hidri, Zoghlami & Ayed, 2018 ) con-

erns parallel algorithms and distributed clustering used to an-

lyze Big data. The aim is to cluster data in a compact for-

at, which represents an informative version of the whole data.

omprehensive experiments on both numerical and categorical

atasets were conducted to study the impact of the use of

onsensus-based sampling tendency with clustering in a large scale

nvironment. 

An ensemble clustering approach based on sparse graph

epresentation and probability trajectory analysis was proposed

 Huang, Lai & Wang, 2016 ). A dense similarity measure was further

erived from the K-elite neighbor graph using probability trajecto-

ies. On its basis, two consensus functions (probability trajectory

ccumulation (PTA) and probability trajectory based graph parti-

ioning (PTGP)) were proposed. 

A spectral ensemble clustering (SEC) algorithm was proposed

n Liu, Wu, Liu, Tao and Fu (2017) . The time and space complex-

ties of SEC were decreased by identifying the equivalent rela-

ionship between SEC and weighted K-means. The intrinsic con-

ensus objective function of SEC, which bridges the co-association

atrix based methods with the methods with explicit global ob-

ective functions, was shown. The robustness, generalizability, and

onvergence properties of SEC were investigated to show its su-

eriority in theory. It was extended to handle incomplete basic

artitions. 

The volume of information that experts need to process is

rowing rapidly with the development of technology. It is nec-

ssary to develop new intellectual approaches based on machine

earning to help experts make consensus decisions from a pos-

ible set of alternatives. So, Zheng, Li, Hong and Li (2013) pro-

osed PENETRATE (PErsonalized NEws recommendaTion frame-

ork using ensemble hieRArchical clusTEring) to recommend

ews articles within each user’s group. Probabilistic Latent Se-

antic Indexing ( Hofmann, 1999 ) and Latent Dirichlet Allocation

 Blei, Ng & Jordan, 2003 ) models were used to create a user’s

rofile. 

Another example of a consensus clustering application is med-

cal expert systems for diagnosing various diseases ( Lock & Dun-

on, 2013 ). An integrative statistical model for the simultaneous

stimation of both the consensus clustering and the source-specific

lusterings was proposed by Lock and Dunson (2013) . The ap-

roach showed flexible and computationally scalable results in

lustering multisource biomedical data. 

The paper ( Alhusain & Hafez, 2017 ) proposes a random forest

RF) cluster ensemble (RfcluE), a cluster ensemble approach to dis-

over the underlying structure of genetic data based on RFs. How-

ver, the main concern underlying the RF algorithm is that, for

ach run, a different proximity matrix is generated due to its ran-

om nature, therefore producing a different clustering result each

ime. In the paper, this problem was solved. 

Summarizing the analysis of the state of research on the ap-

lication of consensus clustering to the Big data analysis, we can

raw the following conclusions. Works aimed at improving the

uality of clustering often require large computational resources.

lso, consensus clustering is a fairly popular research area due to

he continuous growth of data volumes. This confirms the impor-

ance of our research. 

This paper proposes a new method based on weighted con-

ensus using the purity utility function for Big data clustering. To

valuate the proposed approach, in addition to k-means, various

ther clustering algorithms are considered (DBSCAN ( Ester, Kriegel,

ander & Xu, 1996 ), OPTICS ( Ankerst, Breunig, Kriegel & Sander,

999 ), CLARANS ( Ng & Han, 1994 ) and shared nearby neighbor

lustering (SNNC) ( Shaneck, Kim & Kumar, 2009 ). Experiments on

edium and large datasets show that the proposed approach en-

ures high clustering efficiency. 
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Table 1 

Summary of methods based on consensus clustering. 

References Proposed approach Main contribution Method limitations Experimental datasets Big data 

clustering 

De Oliveira 

et al. (2017) 

A homogeneous clustering 

ensemble based on PSC 

• A consensus function based 

on the Particle Swarm 

Clustering algorithm. 

• Sensitivity of 

initialization issues 

Iris, Wine, Soybean, Inosphere, 

Heart (47–351 instances) 

datasets 

–

• An alignment-free efficient 

representation for both 

disjoint and overlapping 

partitions. 

• High computational 

costs 

Hidri et al. (2018) Divide-and-conquer strategies 

using the consensus tendency 

combined with sampling to 

handle distributed storage, 

analysis and clustering of massive 

data in large-scale environment 

• Speeds up the calculation 

based on a consensus 

tendency 

Time and space 

complexity 

KDDCup1999, Forest Covertype, 

2 × KDD, 4 × KDD large 

datasets 

+ 

• Increases scalability based 

on MapReduce model 

combined with data sampling. 

Alhusain and 

Hafez (2017) 

A cluster ensemble approach 

(RFcluE) for determining the 

underlying structure of genetic 

data based on RFs 

Combining multiple 

clusterings, generated based 

on RFs, produces high quality 

and robust clustering results 

in comparison to a single run 

of RF clustering 

No evaluation in terms 

of time complexity 

Human genotype large datasets + 

Huang et al. (2016) An ensemble clustering approach 

based on sparse graph 

representation and probability 

trajectory analysis 

• Uses only a small number of 

probably reliable links rather 

than all graph links regardless 

of their reliability 

Computational cost 

increases with the 

number of base 

clusterings 

Multiple Features, Image 

Segmentation, MNIST, Optical 

Digit Recognition, Landsat 

Satellite, Pen Digits, USPS, Forest 

Covertype, KDD99-10P, KDD99 

datasets 

+ 

• Incorporates global 

information to construct more 

accurate local links by 

exploiting the random walk 

trajectories. 

Wu et al. (2017) Systematic framework of FCC 

based on a utility function 

• A family of utility functions 

for FCC was gained 

The method does not 

minimize the 

dimensionality after 

data grouping. 

Wine, Dermatology, Libras, 

Breast_w, Satimage, Pendigits, 

tr12 CLUTO (178-10992 

instances) datasets 

–

• FCC trnsformation to a 

weighted piecewise FCM, 

which gains high efficiency via 

iterative process. 
• Both vertical and horizontal 

segmentation schemes for big 

data clustering, which is 

further parallelized on the 

Spark platform. 

Liu et al. (2017) Spectral Ensemble Clustering (SEC) 

for Big data 

• Using spectral clustering of 

a co-association matrix 

decreases the time and space 

complexities of SEC. 

High computational 

costs 

Iris, Wine, MNIST, Dermatology, 

Libras, Breast_w, Satimage, 

Pendigits, cacmcisi CLUTO, 

classic CLUTO, cranmed CLUTO, 

hitech CLUTO, k1b CLUTO, la12 

CLUTO, mm CLUTO, re1 CLUTO, 

reviews CLUTO, sports CLUTO, 

tr11 CLUTO, tr12 CLUTO, tr41 

CLUTO, tr45 CLUTO, letter 

LIBSVM datasets 

+ 

• SEC was extended to adapt 

to incomplete basic partitions, 

which enables a 

row-segmentation scheme 

suitable for big data 

clustering. 

Huang et al. (2018) An ensemble clustering approach 

based on cluster uncertainty 

estimation and local weighting 

strategy 

• Estimation the clusters 

uncertainty using an entropic 

criterion, which requires no 

access to the original data 

features. 

Sensitivity of 

initialization issues 

Caltech20, Forest Covertype, 

Image Segmentation, ISOLET, 

Letter Recognition, Landsat 

Satellite, Multiple Features, 

MNIST, Optical Digit Recognition, 

Pendigits, Semeion, Steel Plates 

Faults, Texture, Vehicle 

Silhouettes, USPS datasets 

–

• Cluster validity index to 

evaluate and weight the 

clusters in the ensemble to 

evaluate the reliability at the 

cluster-level. 
• Two novel consensus 

functions to construct the final 

clusterings. 

Nguyen and 

Caruana (2007) 

EM-like consensus clustering 

algorithms which utilize a feature 

map constructed from the set of 

base clusterings 

• Variations of k-means using 

different distance measures 

applied to the vector of base 

clusterings. 

High computational 

costs 

Australia, Bergmark, Forest 

Covertype, Letters datasets 

–

• The algorithms generate 

multiple consensus clusterings 

with different restarts, and the 

best consensus clustering can 

be selected. 

Lock and 

Dunson (2013) 

Bayesian consensus clustering • Computationally scalable High computational 

costs 

Multisource biomedical datasets + 

• Robust to the unique 

features of each data. 

( continued on next page ) 
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Table 1 ( continued ) 

References Proposed approach Main contribution Method limitations Experimental datasets Big data 

clustering 

Zheng et al. (2013) PENETRATE framework based on 

consensus hierarchical clustering 

method for news recommendation 

• Integrates multiple 

group-oriented news 

hierarchies to capture the 

general reading preference of 

individual users 

• The accuracy is not 

satisfactory. 

Websites news dataset + 

• Automatic determination of 

the number of clusters 

• Limited news 

clustering by 

membership to a 

single cluster 

• Discovery of arbitrary 

clustering shapes 

Mimaroglu and 

Yagci (2012) 

Cliques for combining multiple 

clusterings (CLICOM) method 

Method produces good quality 

final clusterings due to its 

similarity measure based on 

object co-associations. 

• Depends on the 

structure of the graph 

IMAGESEG, Iris, Glasside and 

synthetic (1000–40000 features) 

datasets 

–

• Sensitivity of 

initialization issues 
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3. Evaluation metrics 

External and internal indices are considered in this paper to

evaluate the clustering results. The external index refers to the

comparison of a clustering solution with a real clustering. It is

important when evaluating the performance of the clustering al-

gorithm on large datasets. The internal index evaluates clusters

against their structural properties. Internal cluster validation is

aimed at measuring the quality of clustering under real conditions

when there is no knowledge of real clustering. 

3.1. External validity metrics 

Taking into account the compactness and the separation factors,

the metrics for clustering methods evaluation indicate the correct-

ness of the separation into clusters. 

Assume that the dataset D is divided into classes C + =
( C + 

1 
, . . . , C + 

k + ) (true clustering). And using the clustering procedure

to this dataset, clusters C = ( C 1 ,…, C k ) were obtained. 

A comparison of the clustering methods solutions is based on

counting the number of coincidences C + and C . Based on the

results, a decision is made: an abnormal/normal behavior. The

most well-known metrics for estimating the distance of clustering

methods based on pairs of data points are purity ( Boutin & Has-

coet, 2004 ; Rubinov, Soukhorukova & Ugon, 2006 ), the Mirkin met-

ric ( Mirkin, 1996 ), partition coefficient ( Bezdek & Pal, 1998 ), the

variation of information ( Patrikainen & Meila, 2006 ), F-measure

( Rosenberg & Hirschberg, 2007 ). 

Purity. The purity of the entire collection of clusters is esti-

mated as a weighted sum of the purities of individual clusters

( Aliguliyev, 2009 ; Boutin & Hascoet, 2004 ; Rubinov et al., 2006 ):

purity (C ) = 

1 

n 

k ∑ 

p=1 

max 
p + =1 ,..., k + 

∣∣C p ∩ C + p + 
∣∣ (1)

where k + is the initial number of classes, and k is the number of

clusters to be found. 

Mirkin metric. This metric is defined as follows ( Mirkin, 1996 ):

M 

(
C, C + 

)
= 

1 

n 

2 

( 

k ∑ 

p=1 

| C p | 2 + 

k + ∑ 

p + =1 

∣∣C + p + 
∣∣2 − 2 

k ∑ 

p=1 

k + ∑ 

p + =1 

∣∣C p ∩ C + p + 
∣∣2 

) 

(2)

This metric is equal to 0 for identical clusterings and is positive

otherwise ( Mirkin, 1996 ). 
F-measure is calculated based on value F for clusters C p and C + p+ :

 

(
C p , C 

+ 
p + 

)
= 

2 

∣∣∣C p ∩ C + p + 

∣∣∣
| C p | 

∣∣∣C p ∩ C + p + 

∣∣∣∣∣∣C + p + 

∣∣∣∣∣∣C p ∩ C + p + 

∣∣∣
| C p | + 

∣∣∣C p ∩ C + p + 

∣∣∣∣∣∣C + p + 

∣∣∣
(3)

F-measure of the entire dataset is defined as the sum of the F-

easures of individual clusters, weighted by the cluster size, i.e.

 ( C ) = 

k ∑ 

p=1 

| C p | 
n 

· max 
C + 

p + ∈ C + 
F 
(
C p , C 

+ 
p + 

)
(4)

The higher the F -measure, the better the clustering solution is. 

Partition coefficient (PC) is calculated according to the following

quation: 

 C 
(
C, C + 

)
= 

1 

k k + 

k ∑ 

p=1 

k + ∑ 

p + =1 

( ∣∣C p ∩ C + p + 

∣∣
| C p | 

) 2 

(5)

The higher the value PC ( C, C + ), the better the clustering solu-

ion is. 

Variation of information (VI). This measure evaluates the amount

f information that is obtained and lost when moving from clus-

ering C to another clustering C + . According to Aliguliyev (2009) ;

atrikainen and Meila (2006) 

 I 
(
C, C + 

)
= 

1 

n log n 

k ∑ 

p=1 

k + ∑ 

p + =1 

∣∣C p ∩ C + p + 
∣∣ log 

( 

| C p | 
∣∣C + p + 

∣∣∣∣C p ∩ C + p + 

∣∣2 

) 

(6)

The less VI , the better the clustering solution is. 

.2. Internal validity metrics 

The Davies-Bouldin index and the Calinski-Harabasz index were

onsidered as internal indices for the evaluation of the unlabelled

atasets in this paper. 

Davies-Bouldin index (DB). This index is based on a ra-

io of within-cluster and between-cluster distances ( Davies &

ouldin, 1979 ). DB is calculated as follows: 

B = 

1 

k 

k ∑ 

i =1 

R i (7)

 i = max 
i � = j 

( 

δ( C i ) + δ
(
C j 

)
dist 

(
C i , C j 

)
) 

(8)

here k is the number of clusters, δ is the variance within the

luster, dist is the distance between the i th and j th clusters. The

arget value is the minimum of the index. 
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Fig. 1. Illustration of a co-association matrix for three clusters. 
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Table 2 

Co-association matrix. 
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Calinski–Harabasz index (CH) ( Calinski & Harabasz, 1974 ) is char-

cterized by the following function: 

H = 

B ( k ) / ( k − 1 ) 

W ( k ) / ( n − k ) 
(9) 

 ( k ) = 

k ∑ 

i =1 

n i dis t 2 ( O i , O ) (10) 

 ( k ) = 

k ∑ 

i =1 

∑ 

x ∈ C i 
dis t 2 ( x, O i ) (11) 

here k is the number of clusters, n is the number of objects in

he considered dataset D, C i is the i th cluster, n i is the number

f objects in C i , O is the center of the dataset D, O i is the center

f C i , W ( k ) is the sum of the within-cluster dispersions for all the

lusters, and B ( k ) is the weighted sum of the squared distances be-

ween the C i and dataset D . The most likely number of clusters is

he value of k , at which the CH index reaches its maximum value

 Calinski & Harabasz, 1974 ). 

. Methodology 

.1. DBSCAN 

The DBSCAN (Density-Based Spatial Clustering of Applications

ith Noise) method is based on the concepts of internal and

oundary points, density reachability, D-connectivity, the thresh-

ld ε, and the minimum number of points in a cluster ( MinPts )

 Ester et al., 1996 ). The ε-neighbors of the point p ∈ D are under-

tood as the set of points the distance to which does not exceed ε

 ε ( p ) = { q ∈ D | dist ( p, q ) ≤ ε } (12) 

MinPts is chosen experimentally so that | N ε( q )| ≥ MinPts. MinPts

djusts the “noise” threshold. This clustering algorithm is compu-

ationally simple and resistant to disturbances. 

.2. OPTICS 

Sensitivity to the choice of parameters of the DBSCAN algo-

ithm has generated a number of its modifications. One of them

s OPTICS (Ordering Points to Identify the Clustering Structure)

 Ankerst et al., 1999 ), which allows us to order the initial set and

implify the process of clustering. 

A reachability diagram is constructed in this method due to

hich it becomes possible, with a fixed MinPts value, to process

ot only the specified ε value but also all ε∗ < ε. To order the set

 for each of its elements, two parameters are calculated - core

istance and reachability distance. OPTICS allows solving cluster-

ng problems in conditions where clusters have not only different

hapes but also different data density distribution in each class. 
.3. CLARANS 

CLARANS ( Ng & Han, 1994 ) was proposed for Clustering Large

pplications with Randomized Search and combines the advan-

ages of the PAM and CLARA ( Leonard & Rousseeuw, 1990 ) algo-

ithms. The main idea of PAM is to select one point from each

luster as a medoid. In contrast to k-means, it includes the medoid

nstead of the mean, which makes the algorithm more efficient. 

CLARA is a better solution for handling Big data compared to

AM. But its disadvantage is that it considers data samples, rather

han complete datasets. In this regard, to improve the efficiency

f clustering, the CLARANS algorithm was proposed. It uses a sam-

ling technique to reduce the search space ( Aboubi, Drias & Kamel,

016 ). This approach is performed dynamically at each iteration. At

he same time, the clustering process is a search by a graph which

ode is a set of k medoids. The cost function is assigned to each

ode ( Berry & Browne, 2006 ): 

ost ( X, M ) 

∑ n 
i =1 dist ( x i , rep ( M, x i ) ) 

n 

(13) 

here M is the set of medoids, rep ( M, x i ) returns the medoid in M

losest to x i . 

CLARANS, like PAM, moves from one node to one of its neigh-

ors until it finds a minimum cost solution. CLARA is effective in

educing the search space. And the CLARANS algorithm does this

ynamically. 

.4. k-means 

The k-means algorithm builds k clusters arranged in such a way

s to minimize the standard deviation of the object’s samples from

he cluster’s centers ( Kanungo et al., 2002 ). At the same time, the

nitial arrangement of clusters greatly affects the algorithm. 

The objective function of the algorithm is the mean square dis-

ance (the Euclidean metric) between the object samples and the
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Fig. 2. The dependence of weights of single clustering methods on the parameter λ . 
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Fig. 2. Continued 
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enters of their clusters: 

f ( X, C ) = 

k ∑ 

j=1 

n ∑ 

i =1 

∥∥x i − O j 

∥∥2 
(14) 

here O j is the center of the cluster C j , calculated by Eq. (15) 

 j = 

1 ∣∣C j ∣∣
n ∑ 

i =1 

x i (15) 

.5. SNNC 

The SNNC (Shared Nearest Neighbor Clustering) algorithm was

roposed by Jarvis and Patrick, where a link is created between a

air of points p and q if and only if p and q have each other in their

losest k-nearest neighbor ( Ertoz, Steinbach & Kumar, 2002 ; Jarvis

 Patrick, 1973 ). This algorithm is an extension of the DBSCAN. 

The basic idea of SNNC is based on determining the core points

round which clusters of various sizes and shapes are built, with-

ut worrying about determining their number ( Malchiodi, Bassis &

alerio, 2008 ). Counting the number of points shared between two

oints p and q in their k-nearest neighbor list based on the dis-

ance metric allows us to determine the similarity between them.

he greater the number of shared points, the higher similarity be-

ween p and q . 

. Proposed approach 

Let us denote the following notations: X = { x 1 , x 2 ,…, x n } are the

oints in the dataset, where n is the total number of data points

n the dataset. x i = { x i 1 , x i 2 ,..., x im 

} ∈ R m is the point in the dataset,

here m is the dimension of data points. The partition of X into K

risp clusters is represented as a collection of K subsets of objects

n C = { C k | k = 1, …, K } with C k ∩ C k ′ = ∅ ∀ k � = k ′ and 

⋃ K 
k =1 C k = X

r as a vector of labels π = ( L π ( x 1 ), L π ( x 2 ),…, L π ( x n )) 
T , for any i

 i 
L π−→ { 1 , 2 , . . . , K } . 
Existing consensus clustering methods can be classified, as a

ule, into two categories, that is, methods with global objective

unctions and without them ( Vega-Pons & Ruiz-Shulcloper, 2011 ).

n this paper, we mainly focus on the previous methods, which

re usually formulated as combinatorial optimization problems as

ollows. Given the r basic partitions from X to � = { π , π ,…,
1 2 
r } (a basic partition is the result produced by a single cluster-

ng algorithm (for example, DBSCAN, OPTICS, etc.). And there are

 i -clusters in π i , for 1 ≤ i ≤ r . The goal is to find a consensus par-

ition π by solving the following optimization task: 

∗ = argmax 
π

( w i U ( π, πi ) ) (16) 

here π ∗ is a consensus function, U is a utility function, which

easures the similarity between π and any π i , π i is the basic par-

ition, and w i ∈ [0 , 1] , 
∑ r 

i =1 w i = 1 . 

In other words, we expect to find the optimal partition, which

s the most consistent with the basic partition. Different utility

unctions measure the similarity of two partitions in different as-

ects, providing different objective functions for consensus clus-

ering. The proposed method uses a utility function based on pu-

ity to aggregate all basic partitions into a consensual one, which

akes decisions by general agreement: 

aximize f = ( 1 − λ) ·
r ∑ 

i =1 

w i U ( π, πi ) + λ· ‖ w ‖ 

2 
(17) 

ubject to 

r 
 

i =1 

w i = 1 , w i ≥ 0 , ∀ i (18) 

Where 0 ≤ λ ≤ 1 is the regularization parameter, which speci-

es the trade-off between the maximization of the weighted utility

unction and the smoothness enforced by w . In our experiments, λ
ill be determined experimentally. We use the Euclidean distance,

he Minkowski distance for p = 3 and p = 4, squared Euclidean

istance, cosine distance, and Chebychev distance. 

The first term in Eq. (17) is used to minimize the weighted

istance between individual partitions and π . The second term in

q. (18) is a regularization term for ensuring the smoothness of the

eights. 

The goal of the method is to combine these basic partitions

nto PWCC method, which ensures that the consensus clustering

lgorithm will be highly efficient and reliable. As formulated in

q. (16) , the utility function is defined on two partitions π and π i 

o measure their similarity at the partition level. To calculate the

urity utility function, we can use the following association table

 Table 2 ). 
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Fig. 3. Boxplot diagram of the performance evaluation for all considered datasets. 
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Here π contains K clusters and π i - K i clusters, n (i ) 
k j 

denotes

the number of points contained by both cluster C (i ) 
j 

in π i and

cluster C k in π , n k + = 

∑ K i 
j=1 

n (i ) 
k j 

is the number of points in C k ,

n (i ) 
+ j = 

∑ K 
k =1 n 

(i ) 
k j 

is the number of points in C (i ) 
j 

, n is the total num-

ber of points. 
Fig. 1 shows an example of a co-association matrix for a data

et of 10 points. It illustrates one basic partition π1 , highlighted in

reen, and true clustering, marked in red. 

Let m 

(i ) 
jk 

= ( max n (i ) 
j1 

, max n (i ) 
j2 

, . . . , max n (i ) 
j K i 

) and m 

(i ) 
k 

= n (i ) 
+ k ,

hen we can define the utility function to measure the similarity

etween the two partitions presented in Table 2 . In this paper, the
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Fig. 3. Continued 

Table 3 

Summary of the datasets. 

Dataset Number of instances C −
1 

C + 
1 

Number of attributes 

Diabetic 1151 611 540 19 

Phishing 11,055 4898 6157 30 

NSL-KDD_All 148,517 71,463 77,054 41 

Banknote authentication 1372 762 610 4 

Magic04 19,020 12,332 6688 10 

Credit card clients 30,000 23,364 6636 23 

Phone Accelerometer 13,062,475 6240,983 6821,492 6 

Covertype 581,012 20,510 56,0502 54 
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o  
urity utility function has the following form: 

 ( π, πi ) = 

K i ∑ 

k =1 

n 

( i ) 
+ k 
n 

max 
j 

n 

( i ) 
jk 

= 

K i ∑ 

k =1 

m k 

n 

m 

( i ) 
jk 

(19) 

Suppose that there are r basic partitions. The task is to find

 weighted consensus π with a set of { w 1 , w 2 ,…, w r } weights as-

igned to each method. 

We initialize w i = 

1 
r , ∀ i . The weights w i are obtained in Matlab

016a using Optimization Toolbox to solve the optimization prob-

em Eq. (17) –(18) . 

. Experimental results 

The number of experiments was conducted to evaluate the pro-

uctivity of the proposed approach. The experiments were carried

ut using Windows® 10–64 bits operating system platform with

ore i7 processor 2.5 GHz, 8.0GB RAM. The proposed approach was

valuated on R 3.4.1. 

Eight datasets from the UCI repository ( Eggermont, Kok &

osters, 2004 ; Lichman, 2013 ), including Banknote authentica-

ion, Phishing, Diabetic, Magic04, Credit card clients, Phone ac-

elerometer, Covertype, and the NSL-KDD dataset ( Aggarwal &

harma, 2015 ) were used as input data. For the experiments, the

raining and test sets in the last data set were combined (148,517

amples) into the NSL-KDD_All dataset. These datasets have a

mall, medium, and large size. The characteristics of the datasets

re presented in Table 3 . 

All datasets contain two classes: C + 
1 

and C + 
2 

. Samples in class

 

+ 
1 

are considered as anomalies. The values in the datasets were

tandardized during the preprocessing. 

The experiments were focused on comparing the clustering

esults of the proposed approach with different distance met-
ics (Euclidean distance (Eucl), cosine distance (Cos), squared Eu-

lidean (SqEucl) distance, Minkowski distance when p = 3 (Mink3),

inkowski distance when p = 4 (Mink4) and Chebychev (Cheb)

istance) with single clustering methods (DBSCAN ( Ester et al.,

996 ), OPTICS ( Ankerst et al., 1999 ), CLARANS ( Ng & Han, 1994 ),

-means and SNNC ( Shaneck et al., 2009 )). 

The influence of the regularization parameter λ on the perfor-

ance of clustering algorithms on different datasets was consid-

red. We used the values λ = 0.1, λ = 0.2, λ = 0.3, λ = 0.4,

= 0.5, λ = 0.6, λ = 0.7, λ = 0.8, λ = 0.9, and λ = 1.0. The

nitial values of the weights w i for all basic partitions are taken to

e equal to w i = 

1 
5 = 0 . 2 , i = 1, …, 5. 

Fig. 2 shows the dependence of single clustering methods

eights on the parameter λ for all datasets. In Fig. 2 (a), you can

ee the influence of the parameter λ on the weights of five clus-

ering methods for the Diabetic dataset. The weights of the SNNC

ethod at λ = 0.7, λ = 0.8, and λ = 0.9 significantly differ from

= 0.0 ÷ 0.6 and are equal to 0.025, 0.122, and 0.326, respectively.

he best result for this method was observed at λ = 0.9, and for

he whole dataset - for the OPTICS method at λ = 0.6. 

According to Fig. 2 (b), the OPTICS method receives weights

f ~0.98 for the Magic04 dataset when λ = 0.0 ÷0.9. For this

ataset, DBSCAN, CLARANS, k-means, and SNNC showed the low-

st weights. 

Fig. 2 (c) shows that the weights of the DBSCAN, OPTICS, and

-means methods are smaller than the weights of the CLARANS

nd SNNC methods for the NSL-KDD_All dataset. In this case, the

est result for λ = 0.2, λ = 0.6, λ = 0.7, and λ = 0.9 showed the

LARANS method. And the DBSCAN and k-means methods were

neffective. 

For the Banknote authentication dataset ( Fig. 2 (d)), the values

f all five methods practically coincide in two cases: 1) at λ = 0,



10 R.M. Alguliyev, R.M. Aliguliyev and L.V. Sukhostat / Expert Systems With Applications 150 (2020) 113294 

Table 4 

Comparison of weights of single clustering methods for λ = 0.6. 

Dataset DBSCAN OPTICS CLARANS k-means SNNC 

Diabetic 0.200 0.204 0.197 0.197 0.202 

Phishing 0.178 0.182 0.258 0.174 0.208 

NSL-KDD_All 0.202 0.197 0.225 0.201 0.175 

Banknote authentication 0.199 0.185 0.217 0.213 0.186 

Magic04 0.221 0.239 0.181 0.184 0.175 

Credit card clients 0 0 0 0 1 

Phone Accelerometer 0.161 0.125 0.263 0.262 0.189 

Covertype 0.500 0.500 0 0 0 

a) Euclidean distance metric 

Diabetic 1 0 0 0 0 

Phishing 0 0 0 0 1 

NSL-KDD_All 0 0 0 1 0 

Banknote authentication 0 0 1 0 0 

Magic04 0 1 0 0 0 

Credit card clients 0 0 0 0 1 

Phone Accelerometer 0.200 0.203 0.198 0.197 0.202 

Covertype 0.500 0.500 0 0 0 

b) Cosine distance metric 

Diabetic 0 0.984 0.008 0.008 0 

Phishing 0 0 0.998 0.002 0 

NSL-KDD_All 0 0 0.999 0 0.001 

Banknote authentication 0 0.001 0.999 0 0 

Magic04 0 0.986 0.002 0.001 0.011 

Credit card clients 0 0 0 0 1 

Phone Accelerometer 0 0 0.195 0.761 0.045 

Covertype 0.500 0.500 0 0 0 

c) Squared Euclidean distance metric 

Diabetic 0.199 0.205 0.197 0.197 0.202 

Phishing 0.180 0.187 0.250 0.179 0.204 

NSL-KDD_All 0.201 0.199 0.222 0.200 0.178 

Banknote authentication 0.200 0.188 0.212 0.211 0.189 

Magic04 0.217 0.227 0.19 0.189 0.177 

Credit card clients 0 0 0 0 1 

Phone Accelerometer 0.160 0.134 0.253 0.263 0.190 

Covertype 0.500 0.500 0 0 0 

d) Minkowski distance metric (p = 3) 

Diabetic 0.199 0.203 0.198 0.198 0.202 

Phishing 0.180 0.190 0.247 0.182 0.201 

NSL-KDD_All 0.200 0.200 0.220 0.200 0.180 

Banknote authentication 0.201 0.190 0.208 0.211 0.190 

Magic04 0.215 0.220 0.195 0.191 0.179 

Credit card clients 0 0 0 0 1 

Phone Accelerometer 0.167 0.137 0.248 0.255 0.193 

Covertype 0.500 0.500 0 0 0 

e) Minkowski distance metric (p = 4) 

Diabetic 0.194 0.206 0.198 0.198 0.204 

Phishing 0.181 0.204 0.236 0.193 0.186 

NSL-KDD_All 0.185 0.224 0.214 0.184 0.193 

Banknote authentication 0.205 0.197 0.194 0.211 0.193 

Magic04 0.212 0.211 0.202 0.195 0.180 

Credit card clients 0 0 0 0 1 

Phone Accelerometer 0.201 0.164 0.213 0.214 0.208 

Covertype 0.500 0.500 0 0 0 

f) Chebychev distance metric 

 

 

 

 

 

 

 

C  

t  

f

 

O  

m

 

λ = 0.1, λ = 0.2, λ = 0.3, λ = 0.4, and λ = 0.5, and 2) at 0.6 ≤ λ ≤
0.9. The CLARANS method showed the best result, and its weight

was 0.999 at λ = 0.6. 

For the Phishing dataset ( Fig. 2 (e)), the weights of the five clus-

tering methods for different values of λ are fairly close, except at

λ = 0 and λ = 0.2. In this case, the CLARANS method has the

greatest weight. For the Credit card clients dataset ( Fig. 2 (f)), the

best result for all λ � = 1 showed the SNNC algorithm, and all other
methods turned out to be ineffective. t  
According to Fig. 2 (g), the largest weights are achieved by the

LARANS and k-means methods with values of λ > 1. In this case,

he largest weight for the Phone accelerometer dataset is obtained

or k-means with λ = 0.1. 

Considering the Covertype dataset ( Fig. 2 (h)), the DBSCAN and

PTICS methods showed the best results. And the CLARANS, k-

eans, and SNNC methods were ineffective. 

Thus, summarizing the above, the CLARANS method showed

he best results for NSL-KDD_All, Banknote authentication and
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Table 5 

Comparison of the performance of the proposed approach with single clus- 

tering methods for the Diabetic dataset. 

Method Purity Mirkin F-measure VI PC 

DBSCAN 0.5308 0.4999 0.5517 0.1932 0.2509 

OPTICS 0.5361 0.4974 0.5358 0.1955 0.2524 

CLARANS 0.5308 0.4982 0.5816 0.1884 0.2511 

k-means 0.5308 0.4982 0.5816 0.1884 0.2511 

SNNC 0.5352 0.4975 0.5348 0.1957 0.2521 

PWCC(Eucl) 0.5308 0.4982 0.5816 0.1884 0.2511 

PWCC(Cosine) 0.5361 0.4974 0.5358 0.1955 0.2524 

PWCC(SqEucl) 0.5361 0.4974 0.5358 0.1955 0.2524 

PWCC(Mink3) 0.5308 0.4982 0.5816 0.1884 0.2511 

PWCC(Mink4) 0.5308 0.4982 0.5816 0.1884 0.2511 

PWCC(Cheb) 0.5308 0.4982 0.5816 0.1884 0.2511 

Table 6 

Comparison of the performance of the proposed approach with single clus- 

tering methods for the Banknote authentication dataset. 

Method Purity Mirkin F-measure VI PC 

DBSCAN 0.5554 0.4995 0.6006 0.1615 0.2567 

OPTICS 0.5554 0.4946 0.5750 0.1850 0.2536 

CLARANS 0.6239 0.4694 0.6209 0.1825 0.2675 

k-means 0.6122 0.4748 0.6219 0.1780 0.2615 

SNNC 0.5554 0.4978 0.5671 0.1863 0.2529 

PWCC(Eucl) 0.5554 0.4991 0.5199 0.1907 0.2533 

PWCC(Cosine) 0.6239 0.4693 0.6209 0.1825 0.2675 

PWCC(SqEucl) 0.6239 0.4693 0.6209 0.1825 0.2675 

PWCC(Mink3) 0.5554 0.4991 0.5199 0.1907 0.2533 

PWCC(Mink4) 0.5554 0.4991 0.5199 0.1907 0.2533 

PWCC(Cheb) 0.5554 0.4991 0.5199 0.1907 0.2533 

Table 7 

Comparison of the performance of the proposed approach with single clus- 

tering methods for the NSL-KDD_All dataset. 

Method Purity Mirkin F-measure VI PC 

DBSCAN 0.5134 0.4987 0.6716 0.0587 0.3753 

OPTICS 0.6400 0.4608 0.5489 0.0868 0.3148 

CLARANS 0.8489 0.2565 0.8533 0.0563 0.4111 

k-means 0.5188 0.4993 0.6832 0.0582 0.3752 

SNNC 0.5470 0.4956 0.6018 0.0924 0.2553 

PWCC(Eucl) 0.7552 0.3697 0.7734 0.0690 0.3897 

PWCC(Cosine) 0.5188 0.4993 0.6832 0.0582 0.3752 

PWCC(SqEucl) 0.8489 0.2565 0.8533 0.0563 0.4111 

PWCC(Mink3) 0.7552 0.3697 0.7734 0.0690 0.3897 

PWCC(Mink4) 0.7552 0.3697 0.7734 0.0690 0.3897 

PWCC(Cheb) 0.7552 0.3697 0.7734 0.0690 0.3897 

Table 8 

Comparison of the performance of the proposed approach with single clus- 

tering methods for the Phishing dataset. 

Method Purity Mirkin F-measure VI PC 

DBSCAN 0.5569 0.4987 0.5312 0.1468 0.2549 

OPTICS 0.5569 0.4987 0.5309 0.1468 0.2549 

CLARANS 0.7166 0.4062 0.7283 0.1189 0.3053 

k-means 0.5569 0.4957 0.6550 0.1229 0.2524 

SNNC 0.5569 0.4988 0.6739 0.1016 0.2745 

PWCC(Eucl) 0.5905 0.4836 0.7174 0.0948 0.2927 

PWCC(Cosine) 0.5569 0.4988 0.6739 0.1016 0.2745 

PWCC(SqEucl) 0.7166 0.4062 0.7283 0.1189 0.3053 

PWCC(Mink3) 0.5905 0.4836 0.7174 0.0948 0.2927 

PWCC(Mink4) 0.5905 0.4836 0.7174 0.0948 0.2927 

PWCC(Cheb) 0.5905 0.4836 0.7174 0.0948 0.2927 
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Table 9 

Comparison of the performance of the proposed approach with single clus- 

tering methods for the Magic04 dataset. 

Method Purity Mirkin F-measure VI PC 

DBSCAN 0.7531 0.3719 0.7675 0.1028 0.3093 

OPTICS 0.7740 0.3498 0.7963 0.0906 0.3414 

CLARANS 0.6484 0.4577 0.6439 0.1272 0.2769 

k-means 0.6484 0.4833 0.5842 0.1329 0.2741 

SNNC 0.6569 0.4507 0.7724 0.0837 0.2671 

PWCC(Eucl) 0.7053 0.4157 0.7694 0.0912 0.3058 

PWCC(Cosine) 0.7740 0.3498 0.7963 0.0906 0.3414 

PWCC(SqEucl) 0.7740 0.3498 0.7963 0.0906 0.3414 

PWCC(Mink3) 0.7053 0.4157 0.7694 0.0912 0.3058 

PWCC(Mink4) 0.7053 0.4157 0.7694 0.0912 0.3058 

PWCC(Cheb) 0.7053 0.4157 0.7694 0.0912 0.3058 

Table 10 

Comparison of the performance of the proposed approach with single clus- 

tering methods for the Credit card clients dataset. 

Method Purity Mirkin F-measure VI PC 

DBSCAN 0.7788 0.4889 0.5410 0.1162 0.3261 

OPTICS 0.7788 0.4891 0.5405 0.1162 0.3261 

CLARANS 0.7788 0.4890 0.5407 0.1162 0.3261 

k-means 0.7788 0.4890 0.5407 0.1162 0.3261 

SNNC 0.7788 0.4135 0.7893 0.0783 0.3722 

PWCC(Eucl) 0.7788 0.4135 0.7893 0.0783 0.3722 

PWCC(Cosine) 0.7788 0.4135 0.7893 0.0783 0.3722 

PWCC(SqEucl) 0.7788 0.4135 0.7893 0.0783 0.3722 

PWCC(Mink3) 0.7788 0.4135 0.7893 0.0783 0.3722 

PWCC(Mink4) 0.7788 0.4135 0.7893 0.0783 0.3722 

PWCC(Cheb) 0.7788 0.4135 0.7893 0.0783 0.3722 

Table 11 

Comparison of the performance of the proposed approach with single clus- 

tering methods for the Phone Accelerometer dataset. 

Method Purity Mirkin F-measure VI PC 

DBSCAN 0.5136 0.4999 0.6611 0.0600 0.2583 

OPTICS 0.5089 0.4998 0.5348 0.0904 0.2501 

CLARANS 0.7393 0.3858 0.7499 0.0660 0.3435 

k-means 0.7403 0.3845 0.7257 0.0619 0.3613 

SNNC 0.6325 0.4649 0.6257 0.0856 0.2687 

PWCC(Eucl) 0.6932 0.4191 0.6829 0.0732 0.3168 

PWCC(Cosine) 0.5872 0.4693 0.5939 0.0856 0.2671 

PWCC(SqEucl) 0.7403 0.3845 0.7257 0.0620 0.3613 

PWCC(Mink3) 0.6891 0.4206 0.6826 0.0741 0.3121 

PWCC(Mink4) 0.6932 0.4206 0.6826 0.0741 0.3121 

PWCC(Cheb) 0.7109 0.4043 0.7050 0.0704 0.3263 

Table 12 

Comparison of the performance of the proposed approach with single clus- 

tering methods for the Covertype dataset. 

Method Purity Mirkin F-measure VI PC 

DBSCAN 0.9647 0.0681 0.9820 0.0115 0.2330 

OPTICS 0.9647 0.0681 0.9820 0.0115 0.2330 

CLARANS 0.9647 0.4610 0.4894 0.0605 0.4632 

k-means 0.9647 0.4315 0.4489 0.0580 0.4625 

SNNC 0.9647 0.1230 0.9320 0.2380 0.4303 

PWCC(Eucl) 0.9647 0.1972 0.8449 0.0298 0.3968 

PWCC(Cosine) 0.9647 0.0722 0.9780 0.0127 0.3021 

PWCC(SqEucl) 0.9647 0.0788 0.9820 0.0115 0.4058 

PWCC(Mink3) 0.9647 0.2405 0.7851 0.0342 0.4323 

PWCC(Mink4) 0.9647 0.1530 0.8871 0.0237 0.4194 

PWCC(Cheb) 0.9647 0.2206 0.8139 0.0316 0.3940 

t  

c  

p  

s  

o

hishing datasets, OPTICS for Diabetic and Magic04 datasets, and

NNC for Credit card clients dataset. And the result reached 100%.

 i = 0.2 ( i = 1, …, 5) is the optimal solution for λ = 1, which was

onfirmed from experiments. 

Thus, the best results for the Diabetic, Phishing, NSL-KDD_All,

anknote authentication, Magic04, Credit card clients, and Cover-
ype datasets were obtained at λ = 0.6, and for the Phone Ac-

elerometer dataset at λ = 0.1. A set of weights obtained with the

roposed approach for all datasets is shown in Table 4 . It can be

een that the values of the weights are comparable to the results

f the proposed approach. 
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Table 13 

The resultant rank of the clustering methods. 

Method The number of times the method is in the sth rank s = Resultant rank 

1 2 3 4 5 6 7 

PWCC (SqEucl) 24 2 4 0 0 0 0 28.5714 

PWCC (Cosine) 15 4 7 1 2 1 0 25.1429 

CLARANS 14 4 7 1 4 0 0 24.7143 

PWCC (Eucl) 8 8 9 1 1 3 0 23.1429 

PWCC (Mink3) 8 8 9 1 1 3 0 23.1429 

PWCC (Mink4) 8 8 9 1 1 3 0 23.1429 

PWCC (Cheb) 8 8 9 1 1 3 0 23.1429 

OPTICS 8 3 7 7 3 2 0 21.4286 

DBSCAN 2 9 7 7 3 1 1 20.4286 

k-means 4 6 8 4 4 4 0 20.0000 

SNNC 6 5 4 6 5 4 0 19.8571 

Table 14 

P values produced by Wilcoxon’s rank sum test by comparing PWCC(SqEucl) with other methods. 

Dataset PWCC(Eucl) PWCC(Cosine) PWCC(Mink3) PWCC(Mink4) PWCC(Cheb) 

Diabetic 0.0286 1 0.0286 0.0286 0.0286 

Phishing 0.0286 1 0.0286 0.0286 0.0286 

NSL-KDD_All 0.0286 0.0286 0.0286 0.0286 0.0286 

Banknote authentication 0.0571 1 0.0571 0.0571 0.0571 

Magic04 0.0286 0.0286 0.0286 0.0286 0.0286 

Credit card clients 1 1 1 1 1 

Phone Accelerometer 0.0261 1.5114e-04 0.0076 0.0076 0.0024 

Covertype 1 1 1 1 1 
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The maximum weights were assigned to the DBSCAN and OP-

TICS methods when applying the Euclidean distance metric to the

proposed approach for the Covertype dataset, and for the Credit

card clients’ dataset, the SNNC method ( Table 4 (a)) received the

largest weight. 

The application of the cosine distance metric allowed deter-

mining precisely the best approach for the Banknote authentica-

tion, Magic04, Covertype, and Credit card clients’ datasets, accord-

ing to Table 4 (b) and Fig. 2 . Table 4 (c) showed almost 100% de-

termination of the best approaches on all datasets for the pro-

posed approach with the squared Euclidean distance metric. Ac-

cording to Table 4 (d) and (e), the CLARANS method received the

largest weight for the Phishing, Banknote authentication, Phone

Accelerometer, and NSL-KDD_All datasets when using the Mink3

and Mink4 distance metrics. According to Chebychev distance met-

ric ( Table 4 (f)), the best result for the Phishing dataset showed

the CLARANS method, and for the Diabetic dataset – the OPTICS

method, and for the Phone Accelerometer dataset – k-means and

CLARANS. 

The results of the proposed approach based on the metrics pu-

rity, Mirkin, PC, VI, and F-measure are presented in Tables 5-12 .

The best results in the tables were marked in bold. 

The comparison of the proposed approach with single cluster-

ing methods ( Table 5 ) for Diabetic dataset showed that the first

one when considering the cosine distance metric, showed the best

results for the largest number of metrics (Purity, Mirkin, and PC),

which coincided with the result of OPTICS method. 

And for squared Euclidean distance, the best result was

achieved only for two metrics: Mirkin and PC. The highest result

according to the F-measure and VI metrics showed CLARANS and

k-means, which coincided with the indicators of the proposed ap-

proach for Mink3, Mink4 and Chebychev distance metrics. 

Based on the results of the experiments, the proposed consen-

sus approach with two distance metrics (cosine and squared Eu-

clidean distance metrics) showed the best indicators according to

Purity (0.6239), Mirkin (0.4693), and PC (0.2675) for the Banknote

authentication dataset ( Table 6 ), but gave a worse result than k-
eans and DBSCAN methods using the F-measure and VI metrics,

espectively. 

From Table 7 , it can be concluded that the proposed approach

ith the squared Euclidean distance gave the best result according

o all five metrics and coincided with the result of the CLARANS

ethod for NSL-KDD_All. 

Analysing Table 8 for the Phishing dataset, it can be concluded

hat the proposed consensus approach with squared Euclidean dis-

ance gave the best result for the Purity (0.7166), Mirkin (0.4062),

-measure (0.7283) and PC (0.3053). Despite this indicator, the Eu-

lidean, Mink3, Mink4, and Chebychev distances, the results of the

asic partitions surpassed by VI and amounted to 0.0948. 

For the Magic04 dataset ( Table 9 ), the proposed approach with

osine and squared Euclidean distances showed the best results for

our metrics (Purity, Mirkin, F-measure, and PC), but gave way, ac-

ording to VI, to the SNNC method. 

Comparing the results in Table 10 , Purity gave the same results

or all methods and amounted to 0.7788 for the Credit card clients’

ataset. The proposed approach showed an excellent result for all

istance metrics. 

Research showed that the proposed method reveals more

nomalies in clusters than each single clustering method. 

For the Phone Accelerometer dataset ( Table 11 ), the proposed

pproach outperformed such single clustering methods as DBSCAN

nd OPTICS according to Purity, Mirkin, F-measure, and PC, but

lightly conceded according to VI. 

According to Table 12 , the proposed approach using the squared

uclidean distance metric gave the best result for a Covertype

ataset according to Purity, F-measure, and VI. It slightly conceded

BSCAN and OPTICS, according to Mirkin. PC metric showed that a

ower score was obtained for CLARANS. 

According to the ranks obtained for the Purity, Mirkin, F-

easure, VI, and PC metrics, the resultant rank was calculated

 Davies & Bouldin, 1979 ) for all clustering methods (single clus-

ering methods and the proposed consensus approach) ( Table 13 ). 

From Table 13 , the proposed approach using the squared Eu-

lidean metric showed the best result for all data sets according
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Fig. 4. Boxplot diagram of the performance evaluation for the Phone Accelerometer dataset. 

Fig. 5. Boxplot diagram of the performance evaluation for the Covertype dataset. 
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o three metrics (Purity, Mirkin, and PC), and the worst result was

hown by the SNNC method according to the Purity. 

The proposed approach with the cosine metric has the second

ank according to Purity, Mirkin, and PC when considering all data

ets in general, even though it received unsatisfactory results for

SL-KDD_All and Phishing datasets. 

From Tables 5-13 we can conclude: 

(1) The selection of the distance metric significantly affects the

quality of consensus clustering. 

(2) The best results among the clustering methods showed the

proposed purity-based consensus clustering approach . 

(3) The method using Euclidean, Minkowsky ( p = 3 and

p = 4), and Chebychev distance metrics have the same ranks

( Table 13 ) equal to 23.1429. 

(4) The proposed approach based on squared Euclidean and co-
sine metrics outperforms single clustering methods. s  
. Statistical significance test 

.1. Statistical analysis of proposed approach 

To evaluate the statistical significance of the summarization re-

ults, a statistical significance test, known as the Wilcoxon’s rank-

um test for independent samples ( Hollander, Wolfe & Chicken,

015 ), was conducted at the 5% significance level. Five groups,

orresponding to the five methods (PWCC(Eucl), PWCC(Cos),

WCC(Mink3), PWCC(Mink4) and PWCC(Cheb)), have been created

or each dataset. Two groups are compared at a time one corre-

ponding to PWCC(SqEucl) method and the other five methods.

ach group consists of the Purity values for the datasets produced

y ten consecutive runs of the corresponding method. 

To establish that this goodness is statistically significant,

able 14 reports the P values produced by Wilcoxon’s rank-sum

est for comparison of two groups at a time. As a null hypothe-

is, it is assumed that there are no significant differences between
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the median values of two groups, whereas the alternative hypoth-

esis is that there is a significant difference in the median values of

the two groups ( Alguliev, Aliguliyev & Mehdiyev, 2011 ). It is clear

from the table that P values are much less than 0.05 (5% signifi-

cance level) for the large Phone accelerometer dataset. 

It indicates that the best median values obtained by

PWCC(SqEucl) are statistically significant and did not occur

by chance. 

The boxplot diagrams are given below for a visual comparison

of the performances of the considered methods ( Fig. 3 ). It can be

seen that the maximum accuracy and the highest minimum accu-

racy are observed for PWCC(SqEucl). And for the Diabetic, Magic04,

and Banknote authentication datasets, the PWCC(SqEucl) method

also showed high results. 

7.2. Statistical analysis of unlabeled Big data clustering 

In this section, we demonstrate the ability to apply weighted

consensus clustering to unlabeled big data analysis. To this end, the

purity-based utility function was replaced with a DB index based

one. In this case, the task is to minimize the objective function ( Eq.

(17) ) to find the optimal consensus partition. 

The superiority of the proposed method using the squared Eu-

clidean metric can be seen from Figs. 4 and 5 , which presents the

results of the proposed approach evaluation based on the DB index

and the CH index. 

The proposed model also surpassed the proposed method when

using other distance metrics for more than 50% of the results for

the Phone Accelerometer dataset ( Fig. 4 ). The worst performance,

according to DB and CH indices ( Fig. 4 ), is observed for the pro-

posed method with the cosine metric. 

According to Fig. 5 , the proposed approach showed similar re-

sults for all considered distance metrics. The above analysis allows

us to conclude that the proposed method provides high accuracy

for big data clustering. 

8. Conclusions and future work 

The emergence of the Big data area has led to the widespread

development of supervised ensemble methods. However, the in-

creasing attention of researchers is now focused on the develop-

ment of unsupervised methods due to the need to analyze large

amounts of data without predetermined class labels. 

This paper reviewed several studies on the development of con-

sensus clustering methods. It is one of the state-of-the-art areas for

knowledge discovery issues addressing Big data. 

In this paper, a weighted consensus clustering for efficient in-

tegration of single clustering methods was proposed. The purpose

of this paper was to show that weighting improves the solution

for clustering large datasets. The comparison was made using eight

datasets containing anomalous values. The results obtained by the

DBSCAN, OPTICS, CLARANS, k-means and SNNC algorithms are used

when forming the final solution. The quality of the clustering re-

sult was estimated using five metrics (Purity, Mirkin, PC, VI, and

F-measure). 

Based on the experimental results, the following conclusions

can be drawn: 

• The experimental results showed that the proposed algorithm

more accurately detects anomalies compared to single cluster-

ing methods. PWCC using Euclidean, Minkowski ( p = 3 and

p = 4), squared Euclidean, cosine, and Chebychev distance met-

rics was compared to single clustering methods. The best par-

tition was determined when applying the proposed algorithm

with the squared Euclidean distance metric to the considered

datasets. Based on the experimental results, it can be concluded
that the PWCC compensates for the shortcomings of each con-

sidered method and increases the efficiency of clustering. 
• The proposed approach is designed for any number of alterna-

tives and can be implemented in any architecture. It can be ap-

plied by experts when making a group decision. 
• Despite this, the proposed weighted consensus depends on

prior knowledge of the number of clusters and the initializa-

tion of cluster centers. 

However, many unresolved problems remain in this area, which

hould stimulate researchers to develop new and improve existing

onsensus clustering approaches. In the future, we will focus on

he following issues: 

• Existing methods based on consensus clustering consider a

fixed number of basic partitions that play an important role in

making the final decision. A small number of basic partitions

can make it difficult for an expert to make the correct final de-

cision. Interactively selecting the optimal number of basic par-

titions will improve clustering accuracy and reduce computa-

tional costs. The relevance of the use of deep learning methods

will allow for solving this issue. 
• Parallelization of the proposed algorithm will speed up the

clustering process, performing it on multiple threads. The de-

sired clustering can be obtained for different pairs of clusters. 
• In this paper, the number of clusters for datasets was known in

advance. However, to determine the optimal number of clusters

in large datasets, it is necessary to develop a new approach. 
• Existing methods for initialization of cluster centers have high

computational complexity. The development of a new method

that determines initial centers and improves clustering accuracy

is an interesting area of research. 
• The interpretability of clustering results is important for ex-

tracting knowledge from the information obtained to assist the

expert. The development of approaches in this direction is a

promising research direction and can be useful in many appli-

cations of expert systems. 
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