Menyu
Avtorizasiya  
Login: 
Parol: 
ITI əməkdaslarının elmi isləri Elektron kitabxana Konfranslar İnformasiya Sistemi Qəzetlər UOT 004
eXTReMe Tracker
ITI əməkdaşlarının elmi işləri - tezis


 Biblioqrafik təsvir
 Mamedova , M.H. Prognosing Hepatocellular Carcinoma Based on a National Database Using Machine Learning Algorithms / M.H. Mamedova , Z.G. Jabrayilova , L. Garayeva // 9th International Conference on Control and Optimization With Industrial Applications. - Istanbul, 2024. - P. 108-113.
 Annotasiya
 Abstract—This article presents a technique for prognosing the hepatocellular carcinoma (HCC), also known as liver cancer, with the application of HCC machine learning algorithms based on available national database. Within the framework of the proposed technique, the MICE algorithm is applied to impute the missing values in the national HCC database, and the transition of data from this database into the HCC Dataset (with known prediction results) taken from the Kaggle site stage by stage in order to obtain prognosis according to the clinical data. Comparison and retrospective analysis of an accuracy criterion of the result obtained from applying Random Forest and XGBClassification to the Extended HCC Dataset enables XGBClassification to perform better. The effectiveness of the proposed technique is determined by the possibility of obtaining prognostic results according to the condition of clinical patients by forming a more perfect database as a result of imputing the missing values in the national database and transferring these data to the expanded database in parts.
 Elektron variant
Yoxdur

     ________
     © ict.az   http://ict.az/az
 
Copyright © 2009-2021 AMEA İnformasiya Texnologiyaları İnstitutu