Menyu
Avtorizasiya  
Login: 
Parol: 
ITI əməkdaslarının elmi isləri Elektron kitabxana Konfranslar İnformasiya Sistemi Qəzetlər UOT 004
eXTReMe Tracker
ITI əməkdaşlarının elmi işləri - tezis


 Biblioqrafik təsvir
 Agayev , F.T. / F.T. Agayev , G.A. Mamadova , R. Malikova , L. Zeynalova et al. // 2024 IEEE 18th International Conference on Application of Information and Communication Technologies (AICT). - Turin, 2024. - P. 1-5.
 Annotasiya
 The purpose of this article is to search and extract the necessary content, identifying curriculum topics. Classification and clustering of text documents are challenging artificial intelligence tasks. Therefore, to implement this task, the study proposed and implemented a tool for analyzing text information. In the article used Data Mining methods to analyze text data and generate educational content. The work used methods for classifying text information, namely, support vector machines (SVM), Naive Bayes classifier, decision tree, K-nearest neighbor (kNN) classifier. These methods were used in developing the curriculum for the specialty "Cybersecurity" for the Faculty of Information and Telecommunication Technologies. About 50 curricula in this specialty were analyzed, topics and sections in disciplines were identified, and the content of the academic program was improved. It is expected that the results obtained can be used by specialists, managers and teachers to improve educational activities.
 Elektron variant
Elektron variant

     ________
     © ict.az   http://ict.az/az
 
Copyright © 2009-2021 AMEA İnformasiya Texnologiyaları İnstitutu