Menyu
ITI
əməkdaslarının elmi isləri
Elektron kitabxana
Konfranslar İnformasiya Sistemi
Qəzetlər
UOT 004
|
ITI əməkdaşlarının elmi işləri - məqalə |
Biblioqrafik təsvir | Alguliyev , R.M. Network cybersecurity incidents multiclassification based on deep learning / R.M. Alguliyev , R.H. Shikhaliyev // Problems of Information Technology. - 2024. - N: 2. - P. 16-23. | Annotasiya | The rapid increase in network traffic and the growing complexity of cyberattacks have rendered
traditional cybersecurity monitoring methods insufficient for effectively detecting and
classifying network incidents. To overcome these limitations, we present a deep learning-based
approach that utilizes a hybrid architecture, combining Convolutional Neural Networks (CNNs)
and Long Short-Term Memory (LSTM) models, for the multi-classification of cybersecurity
incidents. Our model is trained on the CICIDS2017 dataset, which encompasses a wide range of
attack types. The hybrid CNN-LSTM model achieved a classification accuracy of 96.76% and an
error rate of 9.34%, showcasing its ability to accurately detect and classify various cybersecurity
threats. This approach offers a robust solution for enhancing the detection and classification of
network cybersecurity incidents. | Elektron variant | Elektron variant |
|
________
© ict.az http://ict.az/az
|
|