Menyu
Avtorizasiya  
Login: 
Parol: 
ITI əməkdaslarının elmi isləri Elektron kitabxana Konfranslar İnformasiya Sistemi Qəzetlər UOT 004
eXTReMe Tracker
ITI əməkdaşlarının elmi işləri - məqalə


 Biblioqrafik təsvir
 Alguliyev , R.M. Network cybersecurity incidents multiclassification based on deep learning / R.M. Alguliyev , R.H. Shikhaliyev // Problems of Information Technology. - 2024. - N: 2. - P. 16-23.
 Annotasiya
 The rapid increase in network traffic and the growing complexity of cyberattacks have rendered traditional cybersecurity monitoring methods insufficient for effectively detecting and classifying network incidents. To overcome these limitations, we present a deep learning-based approach that utilizes a hybrid architecture, combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) models, for the multi-classification of cybersecurity incidents. Our model is trained on the CICIDS2017 dataset, which encompasses a wide range of attack types. The hybrid CNN-LSTM model achieved a classification accuracy of 96.76% and an error rate of 9.34%, showcasing its ability to accurately detect and classify various cybersecurity threats. This approach offers a robust solution for enhancing the detection and classification of network cybersecurity incidents.
 Elektron variant
Elektron variant

     ________
     © ict.az   http://ict.az/az
 
Copyright © 2009-2021 AMEA İnformasiya Texnologiyaları İnstitutu