Menyu
Avtorizasiya  
Login: 
Parol: 
ITI əməkdaslarının elmi isləri Elektron kitabxana Konfranslar İnformasiya Sistemi Qəzetlər UOT 004
eXTReMe Tracker
ITI əməkdaşlarının elmi işləri - məqalə


 Biblioqrafik təsvir
 Aliguliyev , R.M. Classification Ensemble based anomaly detection in network traffic / R.M. Aliguliyev , M.S. Hajirahimova // Review of Computer Engineering Research. - 2019. - N: 6(1). - P. 12-23.
 Annotasiya
 Recently, the expansion of information technologies and the exponential increase of the digital data have deepened more the security and confidentiality issues in computer networks. In the Big Data era information security has become the main direction of scientific research and Big Data analytics is considered being the main tool in the solution of information security issue. Anomaly detection is one of the main issues in data analysis and used widely for detecting network threats. The potential sources of outliers can be noise and errors, events, and malicious attacks on the network. In this work, a short review of network anomaly detection methods is given, is looked at related works. In the article, a more exact and simple multi-classifier model is proposed for anomaly detection in network traffic based on Big Data. Experiments have been performed on the NSL-KDD data set by using the Weka. The offered model has shown decent results in terms of anomaly detection accuracy.
 Elektron variant
Elektron variant

     ________
     © ict.az   http://ict.az/az
 
Copyright © 2009 Informasiya Texnologiyaları Institutu