Menyu
Avtorizasiya  
Login: 
Parol: 
ITI əməkdaslarının elmi isləri Elektron kitabxana Konfranslar İnformasiya Sistemi Qəzetlər UOT 004
eXTReMe Tracker
ITI əməkdaşlarının elmi işləri - məqalə


 Biblioqrafik təsvir
 Imamverdiyev , Y.N. Deep Learning Method for Denial of Service Attack Detection Based on Restricted Boltzmann Machine / Y.N. Imamverdiyev , F.D. Abdullayeva // Big Data. - 2018. - N: 2, Volume 6. - P. 159-169.
 Annotasiya
 In this article, the application of the deep learning method based on Gaussian–Bernoulli type restricted Boltzmann machine (RBM) to the detection of denial of service (DoS) attacks is considered. To increase the DoS attack detection accuracy, seven additional layers are added between the visible and the hidden layers of the RBM. Accurate results in DoS attack detection are obtained by optimization of the hyperparameters of the proposed deep RBM model. The form of the RBM that allows application of the continuous data is used. In this type of RBM, the probability distribution of the visible layer is replaced by a Gaussian distribution. Comparative analysis of the accuracy of the proposed method with Bernoulli-Bernoulli RBM, Gaussian–Bernoulli RBM, deep belief network type deep learning methods on DoS attack detection is provided. Detection accuracy of the methods is verified on the NSL-KDD data set. Higher accuracy from the proposed multilayer deep Gaussian–Bernoulli type RBM is obtained.
 Elektron variant
Elektron variant

     ________
     © ict.az   http://ict.az/az
 
Copyright © 2009 Informasiya Texnologiyaları Institutu