TENEKOMMYHUKALIUU Ne 4. 2010 I

UOT 681.332

A Survey of Software Implemented Hardware Fault
Tolerance Techniques*

T. H. KAZIMOV, J. M. SHAHRUKH

Azerbaijan National Academy of Sciences, Institute of Information on Technology, Baku
E-mail: depart9@iit.ab.az

This paper surveys various Software Implemented Hardware Fault Tolerance (SIHFT) techniques and methodologies.
A major concern in digital electronics used in space is radiation-induced transient errors. Radiation hardening is an ef-
Sective yet costly solution to this problem. Commercial off-the-shelf (COTS) components have been considered as a low-
cost alternative fo radiation-hardened parts. We assess the effectiveness of Software-Implemented Hardware Fault Tol-
erance (STHFT) techniques in enhancing the reliability of COTS. This paper aims at providing designers and researchers
with an overview of the available SIHFT technigue.

Index Items: SIHFT, transient errors, error detection mechanisms, fault detection, SEU.

B dannoii pabome paccmampusaromca npoepammuvie obecnewenus SIHFT (Software Implemented Hardware Fault
Tolerance) pasiuunbix Memoooe U MexHoA02Ul, 06eCneuusaiomUx Ycmouugocmo AnNAPAMHLIX CPEOCME K OUHOKAM.
Bpemennsie omubiu, 8bi36antbie paduayuell, 3aHuMaiom ocoboe mecmo 6 yudposoi riexmponure. Puduayuonnoe yx-
penierue annapamnbix cpedcme — sgphexmuenoe, Ho 8ce e dupococmosiee pewenue smoi npobaemol. Komnornenmer
xommepueckoeo cmandapma COTS (Commercial off-the-shelf) siganiomes dewesolt aromepHamugol paouauuoHHoOMy
VKpenaenuo wacimei annapamubix cpedeme. Mol oyenugaem spghexmusnocms npoepavmubtx cpedcme SIHFT, ucnono-
3YEMBIX C {eAblo hosbilenus Hadexcrnocmu memodos COTS. lpusodumes kpamiuii 0630p ucnoassyemoix SIHFT, npe-
0OCMABASHOUUX NPOCKMUPOBUUKAM [t UCCIEO08AMENAM 8 3MOU O6AGCIIU BOIMOICHOCMY 8bI60PA MEX Ul UHBIX PELUCHULL.

1. Introduction

rays, can cause transient faults in electronic

systems. Such faults cause errors called Sin-
gle-Event Upsets (SEUs). Transient faults occur
once and then disappear. Often transient faults gen-
erate unpredictable random bit-errors or soff errors in
an application system. A soft error is one that can
be recovered by reprogramming. SEUs are a major
cause of concern in a space environment and have al-
so been observed at ground level. An example effect
is a bit-flip, an undesired change of state in the con-
tent of a storage element. Radiation hardening is a
well known technique used to reduce the sensitivity
of the components to radiation.

Major drawback of the technique is that, the com-
ponents are very expensive and lag behind today’s
commercial components in terms of performance.
Therefore there is a strong motivation to build low-
cost, high performance, fault tolerant systems that
can perform in the space environment. Unhardened
Commercial Off-The-Shelf (COTS) components, as
in many other computing areas, are a challenging
compotator against the specially designed compo-
nents. The major drawback of COTS components is
that they lack or have limited fault avoidance and

R adiation, such as alpha particles and cosmic

* Crarbst AaHa B aBTOPCKOM BapHAHTE,

fault tolerance features. Software-implemented hard-
ware fault tolerance (SIHFT) techniques are pro-
posed to provide low-cost solutions for enhancing the
reliability of these systems without changing the
hardware. First, we describe Error Detection Mech-
anisms which are a way for facing the consequences
of hardware errors, in particular those originating
from transient faults (Soft Errors) caused, for cxam-
ple by small particles hitting the circuit. These EDMs
are extended to SIHFT techniques. Then SIHFT
techniques will be considered.

2. Error Detection Mechanisms

The term software fault tolerance has been tradi-
tionally used for different purposes. We do not con-
sider the issue of eliminating software bugs: we as-
sume that the code is correct, and the faulty behavior
is only due to transient faults affecting the system. It
is possible to achieve a high degree of safe behavior
in ordinary computers by complementing the intrin-
sic Error Detection Mechanisms (EDMs) of the system
(exceptions, memory protection, etc.) with a set of
carefully chosen software error detection techniques.
These techniques include Algorithm Based Fault Tol-
erance (ABFT) [1], Assertions |2], and Control Flow
Checking, procedure duplication [3] and automatic
transformations.

2.1. ABFT. Algorithm Based Fault Tolerance is a
very effective approach but lacks of generality. The

44

technique focuses on matrix computations, and more
specifically, on how we can detect and correct the
probable faults in a matrix-vector or matrix-matrix
multiplication. ABFT is distinguished by three char-
acteristics: The encoding of the data used by the al-
gorithm, the redesign of the algorithm to operate on
the encoded data, and the distribution of the com-
putation steps in the algorithm among computation
units {2, 4].

2.2. Assertions. Assertions are a fairly common
means of program validation and error detection.
An executable assertion is a statement that checks
whether a certain condition holds among various
program variables, and, if that condition does not
hold, takes some action. In essence, they check the
current program state to determine if it is corrupt by
testing for out-of-range variable values, the relation-
ships between variables and inputs, and known cor-
rupted states. These assertion conditions are derived
from the specification, and the assertion can be made
arbitrarily stringent in its checking. Assertions may be
set up to only produce a warning upon detection of
a corrupt state or they may take or initiate corrective
action. For example, upon the detection of a corrupt
state, the assertion may halt program execution or at-
tempt to recover from the corrupt state {4, 13].

2.3. Control Flow Checking. The basic idea of
Control Flow checking is to partition the application
program in basic blocks, i.e., branch-free parts of
code. For each block a deterministic signature is
computed and faults can be detected by comparing
the run-time signature with a pre-computed one. In
most control-flow checking techniques one of the
main problems is to tune the test granularity that
should be used [4].

2.4. Procedure Duplication. Considering the Pro-
cedure Duplication, the programmer decides to dupli-
cate the most critical procedures and to compare the
obtained results. This approach requires that the pro-
grammer define a set of procedures to be duplicated
and introduces the proper checks on the results.
These code modifications can be executed only man-
vally and may introduce errors [4].

2.5. Transformation Rules. This is an approach
based on introducing data and code redundancy ac-
cording to a set of transformations to be performed
on the high-level source code. The transformed code
is able to detect errors affecting both data and code:
the former goal is achieved by duplicating each var-
iable and adding consistency checks after every read
operation. Other transformations focus on errors af-
fecting the code, and correspond from one side to
duplicating the code implementing each operation,
and from the other to adding checks for verifying the
consistency of the executed operations. This set of

OMATHUTHAR COBMECTUMOCTS |

transformation rules applied to the high level code;
these transformations introduce data and code re-
dundancy, which allow the resulting program to de-
tect possible errors affecting data and code. This
method, although devised for transient faults, is also
able to detect most permanent faults possibly existing
in the system [4].

3. Software Implemented Hardware Fault
Tolerance (SIHFT) Techniques

3.1. EDAC. Transient errots in memory chips
are well-known, long considered reliability issues in
computer systems. To prevent this problem FError De-
tection and Correction (EDAC) codes-also called Er-
ror Correcting Codes (ECCs) — are the dominating
solution to this problem. The architecture requires
extra hardware therefore introduces extra cost to the
system. Usually COTS system does have no or very
simplistic EDAC coding schemes. This limitation has
to be solved by using another form of redundancy.
Software EDAC techniques do not require extra
hardware to implement EDAC but presents protec-
tion for code and data that resides in the main mem-
ory. SEUs in main memories usually manifest them-
selves as bit-flips. Software EDAC only addresses to
find solution to transient errors, permanent errors are
out of scope.

The objective is to devise a scheme to protect the
data residing in main memory. The data that are pro-
tected by software EDAC are fetched and used by the
processor in the same way as unprotected data are
fetched and used. The EDAC program runs as a
background task and is transparent to other programs
running on the processor. Moreover, the protected
data bits have to remain in their original form, to
make the scheme transparent to the rest of the sys-
tem. This requires the use of a systematic code such
that data bits are not changed and are separable from
the EDAC check bits.

If the same protection that is provided by hard-
ware is to be provided by software, each read and
write operation done by the processor has to be in-
tercepted. However, this interception is infeasible
because it imposes a large overhead in program exe-
cution time. Therefore, for software-implemented
EDAC, only periodic scrubbing is done. In periodic
scrubbing, the contents of memory are read period-
ically and all the correctable errors are corrected.
When an error is detected, a scrub operation is en-
forced before the program is restarted.

The space used for check bits reduces the amount
of memory available for programs and data. There-
fore, the check-bit overhead (# check bits/ # data
bits) must be as low as possible.

45

TEJIEKOMMYHUKALIMU Ne 4. 2010 I

S Hardwars EDAC
1 -\ ————————
08 ;
g \ \— Software EDAC
aat
= 0.6
A
s
® 04
\ /— No EDAC
02
0 T T T ey T T T T T
0 10 20 pours 30 40

Software and hardware EDAC reliability comparison

It has proved to be very effective in enhancing the
availability of the system. Without software EDAC,
the system works an average of 2 days before it crashes
due to SEU corruptions in programs and needs a reset.
With software EDAC this average was increased to
about 20 days which is still short but is an order of
magnitude improvement. It can be seen from Figure
that, hardware EDAC is outperforming software
EDAC. This is due to the fact that hardware scheme
performs the checking process on the fly for each da-
ta or code word read from the memory in oppose to
the scrubbing process of software scheme [8, 9].

3.2. EDDL. Error Detection by Duplicated Instruc-
tions (EDDI) [10] is a software-only fault detection
svstem that operates by duplicating program instruc-
tions and using this redundant execution to achieve
fault tolerance. In EDDI, the instructions are dupli-
cated during compilation and different registers and
variables are used for the new instructions. This pure
software technique is especially useful when designers
cannot change the hardware, but they need depend-
ability in the computer system.

The Control Flow Checking by Software Signatures
(CFCSS) technique can be used with EDDI to in-
crease the fault coverage. EDDI can be used to detect
faults that are caused by bit-flips in memory, or that
can be modeled as bit-flips in memory. For example
in the operation of transfer from the memory to the
data bus, a bit can be corrupted. This error can be
modeled as a bit-flip in memory. Transient errors in
control logic, address and date buses, functional units
can cause the intermediate value of the computation
to be incorrectly output. These errors can be detected
by EDDI. The basic concept in time redundancy is
to repeat computations and compare output results.
If the errors are detected then the computations can
be performed again to obtain the correct results.

However time redundancy techniques suffer from ex-
ecution time over head and performance loss in the
system,.

The idea of error detection by instruction dupli-
cation is to duplicate the instructions, variables and
registers used in the control flow. Master instructions
are the originals in the source code and the shadow
instructions are the duplicated corresponding ones.
General registers and memory are portioned into two
segments to avoid overlapping store operations. After
the master and shadow instructions are executed, the
results are compared by the comparison instruction. In
a correct execution the results are the same. If results
are not the same, the computation is repeated to ob-
tain the correct output. Below is an example of a sim-
ple duplicated addition operation:

ADD R3, R1, R2 ; master instruction
ADD R23, R21, R22 ; shadow instruction
BNE R3, R23, gotoError ; comparison instruction

To obtain the best performance out of the system,
the comparison instruction should be performed right
before register store operations or a branch or jump
instruction. EDDI is a pure software technique for
error detection and correction that achieves high er-
ror coverage with performance penalty due to the
time redundancy introduced into the system. Algo-
rithms to implement better performing EDDI and
performance results can be found in [8, 10].

3.3. CFCSS. Control Flow Checking by Software
Signatures (CFCSS) is a pure software method that
checks the control flow of a program using assigned
signatures. CFCSS uses an algorithm that assigns a
unigue signature to each node in the program graph
and adds instructions for error detection. Signatures
are embedded into the program during compilation
time using the constant field of the instructions and
compared with run-time signatures when the pro-
gram is executed.

The basic idea of Control Flow checking is to par-
tition the application program in basic blocks, i.e.,
branch-free parts of code. For each block a deter-
ministic signature is computed and faults can be de-
tected by comparing the run-time signature with a
pre-computed one. There is also another algorithm
used to reduce the code size and execution time over-
head caused by checking instructions in CFCSS.
Branching fault injection experiment is used with
benchmark programs to determine the CFCSS per-
formance. In the benchmark programs without
CFCSS, an average of 33,7 % of the injected branch-
ing faults produced undetected incorrect outputs;
however, in the programs with CFCSS, only 3,1 %
of branching faults produced undetected incorrect

46

SALIMTA UHOOPMALMN. BNEKTPOMATHUTHASI COBMECTUMOCTb |

outputs. CFCSS increases the error detection capa-
bility by an order of magnitude without the help of
extra hardware added for error detection.

In CFCSS the program is divided into basic
blocks. All nodes in the program graph are assigned
different arbitrary numbers (signatures), which are
embedded into the program during preprocessing or
compile time. During program execution, a run-time
signature (' is stored in one of the general purpose
registers called the Global Signature Register (GSR),
and compared with the stored signature of the node
whenever control is transferred to a new node. For
multiple branching cases, a run-time adjusting sig-
nature D is combined with G [8, 11]. The complete
algorithm and an example program are presented in
[5]. Comparison of CFCSS with other software sig-
nature techniques can be found in [5].

3.4. SIED. Software Implemented Error Detection
is a new error detection technique which is based on
a new control check flow scheme combined with soft-
ware redundancy. The distinctive advantage of the
SIED approach over other fault tolerance techniques
is the fault coverage. SIED is able to cope with faults
affecting data and the program control flow. This
technique is a new error detection approach combin-
ing software redundancy by duplicating instructions
and the data segment, and a signature monitoring
technique, which checks the inter-block and intra-
block control flow. This method is able to cover both
faults affecting the program execution flow and faults
corrupting the program workspace.

The novelty of the proposed approach is the sig-
nature monitoring technique controlling the program
flow that is combined with data and instruction du-
plication. The intra-block control flow is checked by
introducing a checkpass flag between the original op-
eration and the replicated one, while the inter-block
control flow is checked by using dedicated control
variables, which contain information about the cur-
rent state of the program execution allowing to pre-
dict the next set of instructions that will be executed
by the processor [6]. Since SIED presents high error
detection abilities, it is suitable for safety-critical ap-
plications designed for mobile computing systems.

Another category of purely software approaches is
signature-moniforing technigues in which a unique sig-
naturc associated with a basic block is precompiled
and saved somewhere in memory. During program
execution, the same signature is computed and com-
pared with the reference one. To implement the pro-
posed technique, the program is split in basic blocks.
A basic block is a finite number of ordered instruc-
tions to be executed sequentially. There is no branch-

ing instruction into a basic block, except possibly the
last one [6].

Intra-Block Detection. The intra-block detection
technique was designed to be combined with the in-
struction duplication approach introduced in {7].
The instruction duplication approach is designed to
detect resulting errors in data, but this approach is in-
efficient when faults modify the content of a variable
and its replica. The main idea of the proposed intra-
block detection technique is to ensure that at least
one of two instructions in a pair of related instruc-
tions (the original and its replica) is correctly execut-
ed. Each basic block has a fixed number of instruc-
tions. Intra-block detection is ensured, by introduc-
ing a check pass flag between the original instruction
and its replica.

Inter-Block Detection. In order to detect on-line
faults affecting inter-block transfer control, we devel-
oped an algorithm that assigns a unique signature to
each basic block, and adds extra instructions in order
to check the accuracy of the inter-block transfer con-
trol flow. The control flow is checked knowing in ad-
vance the next set of instructions that compose the
basic block to be executed. Inter-block transfer con-
trol is checked by dedicated control variables con-
taining information about the program execution
current state. These variables are:

e Identifier Block (IDB) — A unique identifier asso-
ciated to each basic block.
e Status Condition Branch (SCB) — SCB is a vari-
able updated each time a conditional instruction is ex-
ecuted.
o Fxecution Order (FO) -~ it decides the branching
order when a block transfers the controf to several dif-
ferent blocks
The signature function used to detect illegal
branches is:
X =f(EOI.I., SCBI.j, IDB) = EO + SCB + IDB,.
There are different types of inter-block transition.
They can be classified in three groups according to
their dependency either on the current state of the
program or on a certain condition to be satisfied (the
case of conditional branching instructions) [6].

4. Conclusion

Table shows the total number of errors in each test
program and the detection mechanism that detected
these errors. Most of the errors were detected by ED-
DI. However, there are errors detected by CFCSS
and watchdog timer, especially for tests with larger
code sizes. Overall, the combination of EDDI, CFCSS
and Watchdog Timer detected a total of 321 errors.

47

Errors detected by each STHFT technique
and undetected errors in the computation tests
on the COTS board [8]

p— " Egrog !?feteictgd Undas

; umber “ach Technique

Program of Errors ! : té:c-ted
EDDI| CFCSS| Watchdog| %

Integer 156 156 — == =

Sort

FP Sort 21 21 — — —

Quick 43 31 S 6 1

Sort-

Integer

FFT 102 99 1 2 —

Total 322 307 6 8 i

There is one case of undetected error. These numbers
yield 99,7 % error detection coverage.

The results from the Hard board show that despite
all the hardware fault tolerance techniques used in
the board; there are cases of undetected errors. Even
if single points of failure are eliminated by better de-
sign, additional fault tolerance techniques, perhaps in
software, may still be required for high reliability.
Software-implemented error detection and recovery
techniques have been effective for the error rate ob-
served in the COTS board. Software EDAC improves
the availability of the COTS board by an order of
magnitude and had only 3 % performance overhead.
Even though hardware EDAC would be preferable
for main memory, software EDAC provided accept-
able reliability for the experiment. The experimental
results show 99,7 % error detection coverage and
98.8 % error recovery coverage. Resuits show that
COTS with STHFT are viable techniques for low-ra-
diation environments. In [12] optimizations applied
to EDDI+ EDAC+ CFCSS will be described. These
optimization comprise Software Implemented Fault
Tolerance (SWIFT).

In this paper a new error detection technique called
Software Implemented Error Detection (SIED) pre-
sented. The proposed method is based on a new con-
trol check flow scheme combined with software re-

TEAEKOMMYHUKALLIUN Ne 4. 2010 I

00O "Hayka M TeXHOJIOTHHT"
Yupeaurens xypHaia Q00 "Hayka u rexHosoruun”
Kypnan 3apeructprposas 8 Komurere Poccuiickoit @enepannn 1o neyaru.
Caugeresberso o perucrpaumu N 018873 o1 27 mas 1999 r.
Peaaxrop Abusosa T. B.
OpuruHai-MakeT ¥ 33CKTPOHHAY sepenst narorosaeHs 8 OO0 "Aapanicen ConomHa"

dundancy. The distinctive advantage of the SIED ap-
proach over other fault tolerance techniques is the
Jault coverage. SIED is able to cope with faults af-
fecting data and the program control flow. Since
SIED presents high error detection abilities, it is suit-
able for safety-critical applications designed for mo-
bile computing systems.

REFERENCES

1. Huang K. H., Abraham J. A. Algorithm-Based Fault Tolez-
ance for Matrix Operations // IEEE Trans. Computers.
Vol. 33. Dec. 1984. P. 518—528.

2. Zenha Rela M., Madeira H., Silva J. G. Experimental Eval-
uation of the Fail-Sitent Behavior in Programs with Counsist-
ency Checks, Proc. FTCS-26, 1996. P. 394—403.

3. Pradhan D. K. Fault-Tolerant Computer System Design.
Prentice Hall PTR, 1996.

4. Stefanidis V. K. and Margaritis K. G. Algorithm Based Fault
Tolerance: Review and experimental study. Parallel and Dis-
tributed Processing Laboratory. Departement of Applied In-
formatics. 2003. WILEY-VCH Verlag GmbH & Co. KGaA.
Weinheim.

5. Nahmsuk Oh, Philip P. Shirvani and Edward J. McCluskey.
Control-Flow Checking by Software Signatures // IEEE
Transaction on reliability. Vol. 31. N 2. March 2002.

6. Nicolescu B., Savaria Y., Velazco R. SIED: Software Imple-
mented Error Detections // Proceedings of the 18" IEEE In-
ternational Symposium on Defect and Fault Tolerance in VLSI
Systems (DFT°03) 1063-6722/03. 2003. {EEE.

7. Nicoleseu B., Velazco R. Detecting soft errors by a purely soft-
ware approach: method, tools and experimental results. De-
sign Automation and Testing in Europe (DATE 2003). Mu-
nich: Germany, March 3—7. 2003.

8. Ugur YENIER. Fault Tolcrant Computing In Space Envi-
ronment And Software Implemented Hardware Fault Toler-
ance Technigues. Department of Computer Engineering Bos-
phorus University. [stanbul, 2000.

9. Shirvani P. P., Gh N,, McCluskey E. J., Wood D. L. and
Lovellette M. N., Wood K. S. Software-lmplemented Hard-
ware Fault Tolerance Experiments COTS in Space. 2000,

10. Oh N., Shirvani P. P., and McCluskey E. J. Error detection
by duplicated instructions in super-scalar processors // IEEE
Transactions on Reliability. 51 (1): 63—75. March 2602,

11. Rebaudenge M., Sonza Reorda M., Terchiano M. Massimo
VIOLANTE "soft-error Detection through Sofiware Fault-
Tolerance Techniques”.

12. George A. Reis jonathan Chang Neil Vachharajant Ram Ran-
gan David I. August, "SWIFT: Software Implemented Fault
Tolerance”, Departments of Electrical Engineering and Com-
puter Science.

{3. Laura L. Pullum, "Software Fault Tolerance Techniques and
Implementation”, 2001 Artech House British Library Cata-
loguing in Publication Data, Boston, London.

Caaxo 8 Habop 28.01.2010. Ioanucado B nevars 11.03.2()10..--
Qopuar 60 x 88 1/8. Yeu-mien. 5. 5,88, Yu.-uan. 4. 6,43, MMeuars uudyposast, Tupak 120 ak3.

Orpedarano 8 000 "Cul”

48

